| 
      
         | 
  
    | 
        
          
            
            
              
              
              
              
                |  |  | 
                Pdf 
                Specs |  
                | Exp | 
      Detection and 
                  Estimation Theory Simulation Trainer | 
				Model |  
                | 1 | Unit I : Statistical 
				Decision Theory Introduction, Bayes’ Criterion-Binary Hypothesis Testing, M-ary 
				Hypothesis Testing, Minimax Criterion, Neyman-Pearson Criterion, 
				Composite Hypothesis Testing, Sequential Detection.
 | DESTIMA100 |  
                | 2 | Unit II : Parameter 
				Estimation-I Introduction, Some Criteria for Good Estimators, Maximum 
				Likelihood Estimation, Generalized Likelihood Ratio Test, Bayes’ 
				Estimation
 |  
                | 3 | Unit III : Parameter 
				Estimation-II Cramer-Rao Inequality, Multiple Parameter Estimation, Best 
				Linear Unbiased Estimator, Least-Square Estimation, Recursive 
				Least-Square Estimator.
 |  
                | 4 | Unit IV : Filtering Introduction, Linear Transformation and Orthogonality Principle, 
				Wiener Filters, Discrete Wiener Filters, Kalman Filter.
 |  
                | 5 | Unit V : Detection 
				and Parameter Estimation Introduction, Signal Representation, Binary Detection, M-ary 
				Detection, Linear Estimation.
 |  
                | 6 | Unit VI : Detection 
				Theory in Radar Introduction, Radar Elementary concepts- Range, Range 
				Resolution, and Unambiguous Range, Doppler Shift, Principles of 
				Adaptive CFAR Detection- Target Models, Review of Some CFAR 
				Detectors.
 |  
                |  |  |  |